

Filters are essential components in hydraulic systems as they perform a role of primary importance, "**Cleaning of the fluid**". Hydraulic systems require filtration products in order to reduce and maintain particulate contamination in-line with the ISO 4406 cleanliness code.

Filters in the medium and high pressure series are designed and built to meet market demands for applications in high pressure hydraulic systems.

Studies conducted by our R&D department on filter housings and filter elements led to the development of a line of products offering excellent technical features including a reduction in pressure drops combined with high dirt holding capacity of the filter elements.

The choice of filter for a given application must take into account all the technical characteristics of the hydraulic system and its components in relation to the work to be performed.

Filter selection and sizing parameters

- 1. Application type
- 2. Type of filter(s)

4

3. Sensitivity of components: to ISO 4406 class x/x/x 4. Filtration efficiency: $\mu m \beta x (c) \ge 1.000$ HLP - HFC - HFD 5. Fluid type: 6. Kinematic viscosity: mm²/sec (cSt) 7. Operating temperature: min - max °C (°K) 8. Working pressure: bar (MPa) 9. Effective flow rate: I/min 10. Maximum pressure drop: ∆p bar (MPa) 11. Bypass valve: with / without 12. Clogging indicator: pressure differential type ∆p bar (MPa)

CONTENTS

Page

Introduction	6
Filter element	9
Filter sizing	12
Differential indicators	15
Indicators/Cartridges combination	22
SAE flanges	23

FILTER TYPE

FMP 03	88 In-line filter Pressure	110 bar	24
FMM 05	50 In-line filter Pressure	280 bar	30
FMP	In-line filter Pressure	280 bar	36
FHA 05	51 In-line filter Pressure	420 bar	46
FHP	In-line filter Pressure	420 bar	52
FHM	Top manifold filter	320 bar	68
FHB	Side manifold filter	320 bar	82
FHF 32	20 HF4 In-line filters and flange	350 bar	92
FHZ 32	20 Reversible filtration filter	420 bar	98
FHD	Duplex in-line filter	350 bar	104

Operation and maintenance

118

Introduction

Installation in open circuits with the following functions:

Working filter

Contamination control of the major components in-line with the ISO cleanliness level specified.

Safety filter

Individual component protection in order to avoid catastrophic failure of components.

Positioning

Down-stream from the pump

As a working filter for small size systems, with limited extension of the tube core.

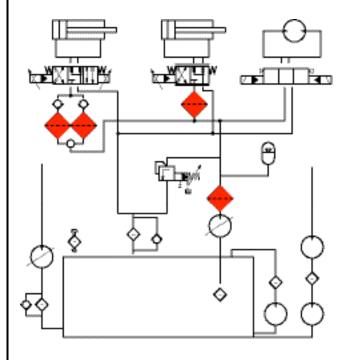
Protection of the system as a safety filter.

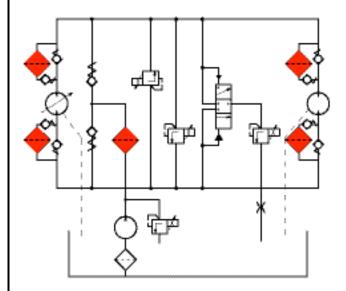
Up-stream from the components

Protection of individual components as a safety or working filter, for large size systems with extensive use of flexible hoses.

On valve banks, blocks, at inlet and/or pilot line of servo valves with both a safety and working function, for large size systems and/or systems with high in sensitive components and in duplex style for systems with continuous operation.

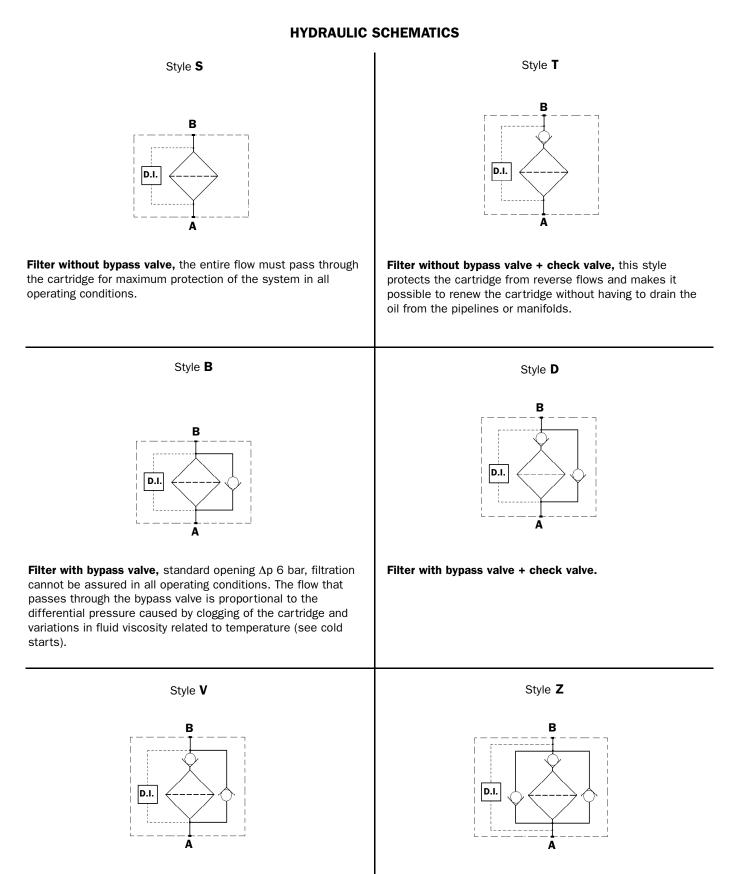
Installations in closed circuits with the following functions:


Service filter: on machines with flexible hoses connected with quick couplers.


Safety filter: protecting pump and motor for systems with large actuators.

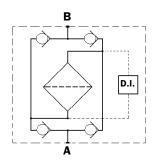
Flushing: the filters are installed exclusively during the flushing phase.

Filters with Reverse Flow valves Reversible filters for bi-directional filtration


Service filter: down-stream from the hydrostatic transmission boost pump.

Hydraulic schematics

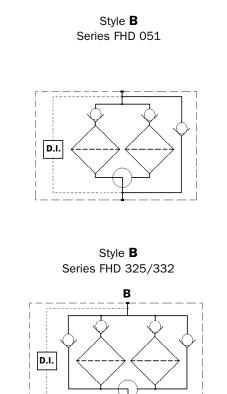
In-line filters for medium and high pressures can be equipped with internal valves to make them compatible with a large range of application conditions.



Filter with Reverse Flow valve, this style makes it possible to guarantee the oil flow inside the head in both directions. Filtration is performed in only one direction of flow.

7

Reversible filtration



Filter with valve for reversible filtration, this style makes it possible to achieve fluid filtration in both directions of flow.

Style S

Double filter without bypass valve, the entire flow must pass through the cartridge for maximum protection of the system in all operating conditions.

Double filter with bypass valve, standard opening Δp 6 bar, filtration cannot be assured in all operating conditions, the flow that passes through the bypass valve is proportional to the differential pressure caused by clogging of the cartridge and variations in fluid viscosity related to temperature (see cold starts).

Α

Filter elements

Description

The filter elements are available with surface and depth filtration media.

Surface media are made of stainless steel wire mesh, nominal filtration.

Depth filtration media are made of inorganic fibre impregnated with epoxy resins, absolute filtration.

Differential collapse pressure

Mesh M	Δp 20 bar	Series N
Mesh T	Δp 210 bar	Series H
Fibre A	Δp 20 bar	Series N
Fibre A	Δp 20 bar	Series R
Fibre A	∆p 210 bar	Series H
Fibre A	Δp 210 bar	Series S

Elements with Δp value of 20 bar are utilized in filters with bypass values.

Elements with Δp value of 210 bar are utilized in filters without bypass valves.

The use of filter elements with Δp value of 20 bar is permitted in filters without bypass valves exclusively during the system start-up phase.

Elements types R and S must be utilized when the filters are equipped with Reverse Flow valves, with or without bypass valve.

Materials

Support tubes - steel with heat-chemical treatment. Inner support tube - steel with heat-chemical treatment.

Compatibility with fluids, filter elements series N-R-H-S-T

- The filter elements are compatible with: Mineral oils to ISO 2943 - 4 Aqueous emulsions Synthetic fluids, water glycol.
- Seals, standard in NBR compatible with: Mineral oils to ISO 2943 - 4 Aqueous emulsions Synthetic fluids, water glycol.
- FPM seals compatible with: Synthetic fluids type HS-HFDR-HFDS-HFDU To ISO 6743-4. To ISO 2943

Composition of filtration media

Series: mesh N

Internal support mesh, stainless steel filtration mesh, external support mesh.

Series: fibre N

Internal support mesh, filter media support, filtration media, prefilter media, external support mesh.

Series: fibre R

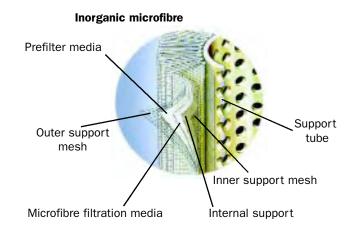
Internal support mesh, filtration media support, filtration media, prefilter media, external support mesh, external support tube (stainless steel).

Series: fibre H

Stainless steel support tube, stainless steel internal support mesh, filtration media support, filtration media, prefilter media, external support mesh.

Series: fibre S

Stainless steel support tube, stainless steel internal support mesh, filtration media support, filtration media, prefilter media, external support mesh, stainless steel external support tube.


Series: mesh H

Stainless steel support tube, stainless steel internal support mesh, filtration media, stainless steel filtration mesh, external support mesh.

Reference standards

All filter elements comply with the following **ISO** standards

150	2941	- Collapse and burst resistance.
I S O	2942	- Bubble point test resistance.
I S O	2943	- Compatibility with fluids.
I S O	3723	- Resistance to axial deformation.
I S O	3724	- Fatigue test with flow.
I S O	3968	- Pressure drop.
I S O	16889	- Filtration efficiency by means of Multipass.

Multipass test in compliance with new ISO 16889 standard. Contaminant ISO MTD							Multipass test in compliance with origir standard. Contaminant ACFTD	nal ISO 4572
Value β	2	10	75	100	200	1000	Value β	200
Filtration efficiency in %	50%	90%	98.70%	99%	99.50%	99.90%	Filtration efficiency in %	99.50%
Filter element			(µ	m ©)				μm
A03	<3	<3	<3	<3	3.30	4.2	A03 3µm	3
A06	<3	<3	4.31	4.53	5.07	6.3	A06 6µm	6
A10	<6	<6	6.12	6.41	7.12	9.0	A10 10µm	10
A16	<7	<7	10.45	10.97	12.13	13.9	A16 16µm	16
A25	<9	12.34	15.82	16.30	17.46	19.3	A25 25µm	25

The above data are referred to a final Δp value of 16 bar

Characteristics of filter elements with nominal filtration, M / T series

For the square stainless steel wire mesh filtration degree is defined as the maximum diameter of a sphere corresponding to the mesh size, in microns.

Components		Recommended filtration							
Servo valves			•	•	•				
Proportional Valves				•	•	•			
Variable displacement Pumps					•	•	•		
Cartridge valves						•	•	•	
Piston pumps						•	•	•	
Vane pumps							•	•	•
Pressure / flow rate control valves							•	•	•
Solenoid valves							•	•	•
ISO code	12/10/7	13/11/8	14/12/9	15/13/10	16/14/11	17/15/12	18/16/13	19/17/14	20/18/15
NAS code	1	2	3	4	5	6	7	8	9
Absolute filtration recommended	3 micron			6 mi	cron	10 m	licron	>10	

International standards for fluid contamination control

Microfibre filter elements tested in collaboration with the following independent institutes.

Filter sizing

Correct sizing of the filter, having in-line or manifold connections must be based on a total pressure drop of between 0.8 and 1.5 bar.

For styles with reverse flow valves, reversible flow, and duplex filters, the total pressure drop can be between 1.5 and 3 bar.

The pressure drop calculation is performed by adding together the value for the housing and the value for the filter element.

The pressure drop in the housing is proportional to the fluid density kg/dm³. All the graphs in the catalogue are based on a mineral oil with density of 0.86 kg/dm³.

The filter element pressure drop value is proportional to viscosity mm^2/s (cSt), the Y values in the catalogue are referred to viscosity of 30 mm^2/s (cSt).

Sizing

Δp Total Δpc Filter body Δpe Filter element Y Multiplication factor (see pages 13 to 14) Q l/min = flow rate V1 = reference viscosity 30 mm²/s (cSt) V2 = operating viscosity in mm²/s Δp Tot. = Δpc + Δpe Δpe = Y : 1000 x Q x (V2/V1)

Calculation example with HLP fluid Variation in viscosity

Data:

Filter with in-line connections Pressure = 380 bar Flow rate = 150 l/min Viscosity = 46 mm²/s (cSt) Density = 0.86 kg/dm³ Filtration = 10 μ absolute With bypass valve

Filter type - FHP 135 3 (see bodies pressure drop graphs on page 54)

Practical example

Q = 150 l/minV₂ = $46 \text{ mm}^2/\text{s}$ Pmax = 380 barFiltration = 10μ absolute Δp Tot. max = **1.5 bar** (max. recommended value) Filter element series N, Δp max 20 bar $\Delta pc = 0.657 \text{ bar}$ (* see diagram) $\Delta pe = (3.38 : 1000) \times 150 \times (46/30) = 0.777 \text{ bar}$ Δp Tot. = 0.657 + 0.777 = 1.434 bar

Sized filter type: FHP 135 3 S A G2 A10 N P01

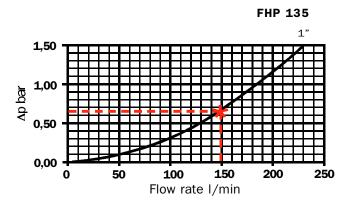
Calculation examples with HFD fluid Variations in viscosity and density

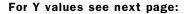
Data:

Filter with in-line connections Pressure = 380 bar Flow rate = 150 l/min Viscosity = 46 mm²/s (cSt) Density = 1.1 kg/dm³ Filtration = 10 μ absolute With bypass valve

Filter type - FHP 135 3 (see bodies pressure drop graphs on page 54)

Practical example


Q	= 150 l/min					
V ₂	= 46 mm ² /s					
Pmax	= 380 bar					
Filtration	= 10 μ absolute					
Δp Tot. max	= 1.5 bar (max. recommended value)					
	nt N series, ∆ p max 20 bar 7 x (1.1/0.86)= 0,84					
$\Delta pe = (3.38 : 1000) \times 150 \times (46/30) = 0.777$ bar						
∆p Tot. = 0,84 + 0.777 = 1,62 bar						
Filter type:						
FHP 135 3 S A G2 A10 N PO1 ($\Delta p \text{ max exceeded}$)						


Switch to next size up FHP 320 ...

Pressure drops ∆p Body

The curves are plotted using mineral oil with density of 0.86 kg/dm 3 to ISO 3968.

 Δp varies proportional with density.

Filter	Series N - R						
Element		Filtration					
Туре	A 0 3	A 0 6	A 1 0	A 1 6	A 2 5	M 2 5	
HP 037 1	70,66	53,20	25,77	20,57	14,67	04,90	
2	26,57	23,27	12,46	09,88	05,58	02,20	
5	36,57	32,28	18,00	13,38	08,00	02,90	
HP 050 1	31,75	33,00	13,16	12,33	07,29	01,60	
2	24,25	21,26	11,70	09,09	04,90	01,40	
3	17,37	16,25	08,90	07,18	03,63	01,25	
4	12,12	10,75	06,10	05,75	03,08	01,07	
5	07,00	06,56	03,60	03,10	02,25	00,80	
HP 065 1	58,50	43,46	26,66	19,66	10,71	01,28	
2	42,60	25,64	17,66	13,88	07,32	01,11	
3	20,50	15,88	08,18	06,81	03,91	00,58	
HP 135 1	20,33	18,80	09,71	08,66	04,78	02,78	
2	11,14	10,16	06,60	06,38	02,22	01,11	
3	06,48	06,33	03,38	03,16	02,14	01,01	
HP 320 1	10,88	09,73	05,02	03,73	02,54	01,04	
2	04,40	03,83	01,75	01,48	00,88	00,71	
3	02,75	02,11	01,05	00,87	00,77	00,61	
4	02,12	01,77	00,98	00,78	00,55	00,47	
HP 500 1	4,44	3,67	2,3	2,1	1,65	0,15	
2	3,37	2,77	1,775	1,68	1,24	0,10	
3	2,22	1,98	1,114	1,09	0,75	0,075	
4	1,81	1,33	0,93	0,86	0,68	0,050	
5	1,33	1,15	0,766	0,676	0,48	0,040	

HP series filter elements

Multiplication factor "Y" for definition of the pressure drop of filter elements.

Reference viscosity 30 mm²/s

Filter		Series N				
Element						
Туре	A 0 3	A 0 6	A 1 0	A 1 6	A 2 5	M 2 5
HF 320 1	03,65	02,95	02,80	01,80	00,90	-
2	02,03	01,73	01,61	01,35	00,85	-
3	01,84	01,42	01,42	01,22	00,80	-

HF series filter elements

Multiplication factor "Y" for definition of the pressure drop of filter elements.

Reference viscosity 30 mm²/s

 \square

Filter Element	Serie H - S						
Element		Filtration					
Туре	A 0 3	A 0 6	A 1 0	A 1 6	A 2 5	T 10	
HP 020 0	216,2	162,5	72,72	58,04	36,36		
1	108,1	81,25	36,36	29,02	18,18	*	
HP 050 1	47,33	34,25	21,50	20,50	14,71		
2	29,10	25,95	14,04	10,90	05,88		
3	20,85	19,50	10,68	08,61	04,36	*	
4	14,55	12,90	07,32	06,90	03,69		
5	09,86	09,34	06,40	04,80	02,50		
HP 065 1	62,28	58,56	26,66	21,66	12,42		
2	43,30	36,63	17,66	14,44	08,88	*	
3	20,55	16,90	08,55	07,09	04,16		
HP 135 1	29,16	25,33	13,00	12,47	05,92		
2	14,28	11,04	07,86	07,60	04,44	*	
3	08,96	07,46	04,89	04,16	03,07		
HP 320 1	13,00	12,19	06,80	06,40	03,32		
2	06,45	05,31	03,01	02,89	01,73		
3	04,13	03,14	01,90	01,78	01,17	*	
4	03,17	02,71	01,80	01,70	01,10		
HP 500 1	9,7	8,81	4,55	4,47	2,8		
2	5,46	4,63	2,88	2,88	2,2		
3	3,9	3,74	2,22	2,07	1,53	*	
4	03,10	02,48	01,56	01,53	01,02		
5	01,93	01,83	01,14	01,08	00,69		

HP series filter elements

Multiplication factor "Y" for determination of the pressure drop of filter elements.

Reference viscosity 30 mm²/s

* "Y" values supplied on request

Filter Element	Serie H						Series N	
Element								
Туре	A 0 3	A 0 6	A 1 0	A 1 6	A 2 5	Т	10	
HF 320 1	06,50	06,20	03,95	03,32	02,70			
2	03,17	02,87	02,23	02,02	01,65		*	
3	02,60	02,40	01,64	01,62	01,42			

Γ

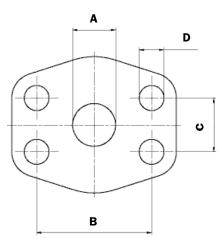
HF series filter elements

Multiplication factor "Y" for determination of the pressure drop of filter elements.

Reference viscosity 30 mm²/s

* "Y" values supplied on request

INDICATORS/CARTRIDGES Combination


Efficient operation and application safety are guaranteed when the filter components are selected correctly. The correct style of cartridge and relative indicator pressure value for each filter layout can be selected using the following table. H - S - T series cartridges (Δp 210 bar) can be replaced with N and R series cartridges (Δp 20 bar) during system flushing phases.

Filter layout (single)	Cartridge Series	Indicator Trip
S without bypass	 H mesh cartridges H fibre cartridges S FHP 500 filters only 	7 bar
B with bypass	N mesh and fibre cartridges	5 bar
T with check valve, without bypass valve	H mesh cartridgesH fibre cartridgesS FHP 500 filters only	7 bar
D with check valve, with bypass valve	N mesh and fibre cartridges	5 bar
V with Reverse Flow valves, without bypass valve	S fibre cartridge	7 bar
Z with Reverse Flow valve, with bypass valve	R mesh and fibre cartridges	5 bar
V with valve for reversible filtration	S mesh and fibre cartridges	7 bar

Double filter layout	Cartridge Series	Indicator Trip in bar				
B with bypass	R mesh and fibre cartridges	5 bar				
S without bypass	H (only for FHD 020 series)	7 - 10 bar				
	S mesh and fibre cartridges	7 - 10 bar				

Γ

Sizes / Connections to SAE flange

Connection to 3000 psi SAE flange

Size	3/4" SAE 3000 PSI M	3/4" SAE 3000 PSI UNC	1" SAE 3000 PSI M	1" SAE 3000 PSI UNC	1 1/4" SAE 3000 PSI M	1 1/4" SAE 3000 PSI UNC	1 1/2" SAE 3000 PSI M	1 1/2" SAE 3000 PSI UNC	2" SAE 3000 PSI M	2" SAE 3000 PSI UNC
Α	19	19	25,5	25,5	32	32	38	38	51	51
В	47,63	47,63	52,37	52,37	58,72	58,72	69,85	69,85	77,77	77,77
С	22,23	22,23	26,19	26,19	30,18	30,18	35,71	35,71	42,88	42,88
D	M10	3/8" UNC	M10	3/8" UNC	M10	7/16" UNC	M12	1/2" UNC	M12	1/2" UNC

Connection to 6000 psi SAE flange

Size	(3/4" SAE 6000 PSI M	3/4" SAE 6000 PSI UNC	1 1/4" SAE 6000 PSI M	1 1/4" SAE 6000 PSI UNC	1 1/2" SAE 6000 PSI M	1 1/2" SAE 6000 PSI UNC		2" SAE 6000 PSI M	2" SAE 6000 PSI UNC
Α		19	19	32	32	38	38		51	51
В		50,80	50,80	66,68	66,68	79,38	79,38		96,82	96,82
С		23,80	23,80	31,75	31,75	36,50	36,50		44,45	44,45
D		M10	3/8" UNC	M14	1/2" UNC	M16	5/8" UNC	;	M20	3/4" UNC

SAE flange connections available on in-Line filters

Filter		SA	E 3000 PSI	SAE 6000 PSI					
Туре	3/4"	1"	1 1/4"	1 1/2"	2"	3/4"	1 1/4"	1 1/2"	2 "
FMP 135	x								
FMP 320		x	x	x					
FHP 135	x					x			
FHP 320		х	x	x			X		
FHP 500				х	x			x	x
FHF 320								x	
FHD 332								x	
				Г					